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Abstract

The paper presents a knowledge-based system dedigne
detect evidence of aggression by means of auditysisa

The detection is based on the way sounds are atilyz

and how they attract attention in the human augitor
system. The performance achieved is comparable
human performance in complex social environmertte. T
Slgard system has been deployed in a number efeatiff
real-life situations and was tested extensivelyhiminner

city of Groningen. Experienced police observers ehav
annotated ~1400 recordings with various degrees of

shouting, which were used for optimization. Allesgl

events and a small number of nonessential aggmessiv

events were detected. The system produces onlyfalse
alarms (non-shouts) per microphone per year andsess
no incidents. This makes it the first successftieamn

system for a non-trivial target in an unconstrained

environment.

1. Introduction

To improve the overall usefulness of camera-based

surveillance systems it is important that situadiovith a
high risk of injury and a relatively fast developmhesuch
as street-fights, are detected as quickly and lebhe as
possible. Only then can appropriate proactive acte
initiated. The ideal is an intelligent camera systthat
does not require a human observer to monitor tleaesc
This system must
situations autonomously and present high prioritgngs
to a human observer for a final check and possdilew-
up.

Developments in image processing techniques arkelyl
to realize this ideal, because visual cues are rgiye
either insufficient or ambiguous. Furthermore, tsuwe
that all potentially dangerous situations will lneview of
a camera, the number of cameras needs to be irdréas
an unrealistic level.

Of course, humans on the street do not only sedidtei
as well. In fact we use acoustical cues typicaly am
indication to raise alertness and to focus visttah#ion in
the correct direction; audition guides vision.

prioritize potentially dangerous
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This paper describes the development of the Siggstém

that detects the presence of aggressive shouting in
realistic, uncontrollable environments. This systemast
function autonomously in complex social environnsent
such as a city center on a busy Saturday nightpaegent
high priority events to a human observer for pdssib

tOfollow-up. Sound Intelligence has installed the batr

aggression detection system successfully in sew@ustdh
city-centers, but also in prisons, in public trar$trains
and train stations), and at various other sites.

This paper starts with a short overview of the fepis
associated with the development of the verbal agiva
detection system and why a knowledge-based approach
has been chosen over the standard statistical oetfibie
scientific basis of the model for verbal aggressisn
addressed in combination with the formulation of a
number of cues. This leads to the design of antewydi
scene analysis system with an attentional mechaaisin
tools to search for aggression cues in the attesitpthl.
This system has been tested in a pilot-project durthg
the first 10 weeks of the official deployment indBmngen.
The paper ends with a number of conclusions abuait t
system itself and the reasons for its successtiatgns
that are well outside the domain of traditional
classification methods.

2. Unconstrained environments

There are two main problems associated with aausti
aggression detection. The first is the rarity oféh events
and the second the fact that the targets typicabur in
environments in which a majority of much more frequ
sounds, like laughter and or playful shouts, odbat are
similar to verbal aggression. It is essential tk@tse
sounds do not lead to a false-alarm rate that is
unacceptable for the user.

There are numerous well-known standard classifinati
methods for acoustic signals, such as Neural Nétwor
Bayesian Nets, and Hidden Markov Models. These
statistical methods rely on the availability of training
databases that are representative for the testastual
deployment condition: the more data and the namrdie
domain the better the classification results wéll b



These methods are unsuitable for verbal aggressiorto a reduction of voice quality caused by a lossaftrol
detection in unconstrained environments [1]. Atfisason  over the vocal folds due to over-excitation. Excieptthe
is that it is very difficult to acquire realistiaaining absolute energy, which is strongly dependent otaice,
examples of the target event (acquiring a few séali  all these cues can be used for verbal aggresstentite.
samples may require many months of recording andHuisman [2] investigated a large number of numérica
manual annotation). A second reason is that sihee t cues that can be estimated from the signal withstheal
operating environment is not known beforehand,sit i processing approach described in the next seclibese
impossible to record suitable training materialt tbavers cues where correlated with the different emotiofisao
all (still unknown) eventualities that may occur &m database of simulated emotions [6]. The three taest for
unconstrained environment. Consequently, the statis  verbal aggression and panic were fundamental fregyue
standard methods are unsuitable for this particular(fy), the ratio of signal energy below and above 1820
problem. (Re), and the standard deviation of the energy ofthinee
highest peaks in the spectrum (dfg). The separation
between strong ergotropic emotions and all othestiems

3. A mode of verbal aggresson in the database in a space spanned by thesesrttaiee
cues is visualized in Figure The fundamental frequency
The starting point for the development of the mofbel IS the most informative cue.

verbal aggression is the assumption that shouts/arizhl
aggression are behaviorally significant, and thatisi
therefore likely that relatively low level neuratogesses

are able to focus attention to the target. Thisliespthat
simple Auditory Scene Analysis (ASA) can be used to
extract an interesting subset of the signal, wtkiah be
analyzed further with class-specific knowledge.

This approach has been investigated in the masterst of
Mark Huisman [2] which addresses the estimation of
emotional content in speech. Huisman uses Scherer’
Component Process theory [3][4] as a theoreticsisba
Scherer describes the reaction of the autonomov®ue
system to an emotional stimulus in terms of anvatitn

or deactivation of ergotropic and trophotropic @auThe

first is associated with a stimulation of the sythia
nervous system and leads for example to an increase 4. System description
heart-rate, blood pressure, transpiration, and redire
secretion. An increase in ergotropic arousal tesual an
orientation reaction due to the stimulus’ apparent
relevance for the internal goals. This increasearamess

of the physical environment and prepares the iddii

for immediate action. Emotions with a strong ergpic
arousal are panic and anger.

Trophotropic arousal leads to the opposite reaction
through a stimulation of the parasympathic nervous
system: the organism loses interest in the enviestirand
becomes self-absorbed. Sadness is an example of
emotion associated with trophotropic arousal.

The combination of ergotropic arousal with the nhesc
and anatomy of the vocal tract results in a nundb@ues
that are in line with the Lombard reflex [5] whickecurs
while speaking in noisy environments. These cormpris
increases of the fundamental frequency, the angdijtu
and the relative duration of the voiced (periodgia)t of
speech, in combination with decreases of the inaposg
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Figure 1 Aggressive emotions are represented bygper surface

The detection system consists of 1) a signal peicgs
stage that simulates some form of auditory attenticthe
form of foreground/background separation, 2) meshiad
extract cues for verbal aggression, and 3) a detisi
mechanism. Together with a description of the ptajsi
implementation these are outlined in this section.
Human hearing consists of several stages, the dfst
which is the conversion of sound waves reachingetre
a%qto a neural signal which can be processed byoth.

n the human inner ear, which is shaped like al'sretiell
hence the name cochlea, a structure called thdabasi
membrane is set in motion by the sound waves regdhi
through the outer and middle ear. This basilar nremd
has varying mechanical oscillatory properties legdio a
nearly exponentially decreasing resonance frequemey
the length of the cochlea.

of the unvoiced fraction and the spectral tilt (@hiesults fi(x)=AL0™ - f,,  A=17.927 kHz
in spectral “whitening”). Apart from these documemt a=60m'
similarities to the Lombard reflex, ergotropic asalileads fo=145.4 Hz
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(See [7] for a more detailed description of thehtea.)

Hair cells placed on the basilar membrane conveest t
motion at each location into nerve activation. This
produces a cochleogram [8], a 2D picture of thegnef

the sound as a function of time and frequency éashe
seen in Figure 2). This energy was computed usieglky
integration with a time constant of 10 ms.

A sophisticated model of the human cochlea, a
transmission-line implementation developed at the
Biophysics department in Groningen [9], was useudis T
ensures minimal information loss in this early staghich o ) ) ) o )
cannot be repaired in later stages. An efficient |mplementat|on of a pitch finding algtm
was used. Herein the average amount of energyedirdt

n harmonics of a pitch candidate, the sum of trerggnat
harmonic positions, is compared to the energy #t ha
harmonichh=(n+1/2)*f, positions. So
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This gives the signal to noise ratio, or salientcthe pitch.
The frequency value with the highest salience seh as
A process located in the first neural relay statiothe  the pitch. When the signal is classified as spdieh-it
cochlear nucleus - analyses the temporal dynamiea¢h ~ has the right temporal dynamics and a pitch inftisaan
frequency channel and performs a first foreground fange, voice properties such as the distortiorhefwoice
background separation [10]. This attenuates theviglo —are determined, which can be associated with streske
changing background sounds that do not attract huma vocal chords. This distortion shows itself as arease in
attention. the high frequency energy, the width and fluctuataf
This function was implemented in the form of a harmonics and in the separation between harmoBaxh
dynamically adapting background model with a time Sound or voice cue is compared with knowledge atiwait
constant of 10 seconds. If the background modelProperties of sounds that attract human attentiageneral
encounters energy more than 6 dB above the cwedne O With values representative of this cue in aggjues
at any location, this energy is assumed to be cabgea ~ Sounds. This results in a measure of verbal aggress
foreground sound, and the corresponding energyots n through the combination of separate cues into aratlv

025 0439 0749 0% 1z 15 175 Z s s

Figure 2: Cochleogram. The last uttering (at t=).%ounds aggressive

included in the background model. pseudo-probability. This is illustrated for the sduused
So for Figure 2 and Figurein Figure 5.
dE, (x,1) Figure 4 shows an overview of the whole system.
T—=2""+E_(xt)=E'(xt)
dt ’
where
E'(xt) = E(xt), if E(xt)-E,(xt)<6dB O

Epy(X,1), if  E(X,1) - Epy(x,t) >6dB
Very short pulse-like sounds that may occur in

microphone SignalS, are remOVed Wlth a Similarm]_h‘e SpectraProcessor. CheckEnergy = CheckSimilarity  FOestimator
. foreground/back- energy values | pattern matching pitch

as used to compute the background, but now usiigea ground separation | and spectral bt

constant of 10 ms. The energy 'filtered' with thime :

constant, and not ‘claimed' by the background maddel AggressionDetector

analyse cues

the foreground signal (see Figure 3).

This foreground signal is used as a basis for ¢laech for
verbal aggression cues. The properties used ae: th Slgard _ Slgard
presence, salience and height of the pitch, thellev S Irtactect
(compensated for the expected distance betweerkepea

and microphone), the audiblity and three measweshe

spectral shape and distortion of the harmonic patte Figure 4 System overview



cochleogram is adapted for the average spectialeimée
of these acoustics.
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e Measuring the quality of the aggression detectigstesn
0 : : objectively is not straightforward. During the dmment
19 pitch height cue of the system there was no scientifically validated
05 w U database with real-life aggression recordings akbél on
' which the system could be validated.
0 overall ikelihood of aggression The Cassandra project, a cooperation with the Usiiye
1 : : : : of Amsterdam, involves the construction of a videw
o5t ] audio database of a range of realistic aggressienes
played by actors in a train station. But althoudis t
00 0'5 1 1'5 42 database contains realistic scenes, the drawbaitieafse

of actors is that they have trained voices, whiohyt
always protect during acting. This is a problemgsione
of the most important cues in the system relatekegdoss
of control over the voice. Another problem is tttedre is
no clear, scientifically valid, and objective meastor the
level of aggression present in a voice that camidesl to
orm a ground-truth.

hese problems prevent a normal scientific valaatBut
a proper scientific validation is not the best aador for
the successful commercial deployment of new teayyol
ultimately customer satisfaction in normal opermtin
conditions is much more important. It was therefore
(decided to let the Groningen police judge the dyiali the
system according to their needs and expectatiohighw
are in part specific for the local situation. Thesl to two
h assessment periods. The first was a three week pilo
project at two locations, which took place in tipeisg of
2005 and the second, which was recently concluded,
the 10 week optimization phase of the official dgphent
with 11 different microphone positions spread ottes
inner-city of Groningen.

tin sec
Figure 5 Computation of overall likelihood basedimdividual cues

If the probability of aggressive shouting is highoagh
over a sufficiently long interval, an aggressioaral is
generated. The thresholds and especially the amanaht
duration of aggression that needs to be present ar
parameters that depend on user feedback.

The physical setup consists of a low cost, fardfiel
weather-proofed, microphone with a ~50 dB dynamic
range (ClockAudio CO007wr). This microphone is
connected to specially designed and weatherprealf/sis
hardware. Detections are routed via IP to a centra
gateway where they are logged and administratedsek
interface can be configured to give an audio orewid
alarm on detection and provides an observer with t
possibility to add comments and access the loggur& 6
shows the user interface.

The varying acoustics of application for examplean
narrow street or on a large open square, are meghsur
during the installation phase. In the optimizedterys the



In both cases the detectors were placed in thecehthe
pub district. This center services about 4000Qatisieach

week and has no serious problem with excessive

aggression. However, (verbal) aggressive incidentsur
with a frequency of about once every week near edich
the 7 camera’s in this area. During the busieseethr
evenings and nights of the week, surveillance tienisive
(both with cameras and foot patrols). The positignof

6. Results

During the pilot phase of 18 days a total of 96edgbns
were produced. The distribution is shown in table 1

Table 1Distribution of detections during pilot project.

the cameras ensures that the probability is lowt tha
aggressive incidents will be missed by the human

observers. This entails that it is possible toneate the

essential useful Justifieq false missed
alarm alarm
2 23 44 27 0

miss- and false-alarm rate reliably.

The police logged all detected aggressive eventiglu
both test periods. At the same time the system ymed
detections which were stored with a temporal cdanoéx

minute before and after the detection. All detewtiavere

During the 10 week optimization phase of the final
deployment, the system used weak settings to eresure
large number of recorded false alarms. These rawsd
were later used to test more restrictive settiflgste that

presented to the camera-observers and assigned tthe optimization involves the reduction of the sHt

different classes, based on their usefulness ggostig
evidence for the camera surveillance task.

Several differences exist between the originalt@itod the
official deployment. In the pilot we used the bt
microphones of the Mobotix M10D camera. However
these turned out to have a dynamic range for &dgHi
sounds that was too limited. This resulted in chpof
very loud signals, such as ambulance sirens.
Unfortunately, clipping has spectral effects thet quite
similar to the loss of voice quality, and therefdfre
results showed an increased number of false alduago
sirens.

During the pilot phase the police used four clageeshe
annotation of the data: essential (indicating aggjom and
the need to act immediately), useful (indicatingragsion
but no need to act), justified (no aggression, the
attention of a policeman on the scene would hawnbe
grabbed) and false alarms. During the deploymemas@h

accepted events: it is impossible that the optithize
settings produce false-alarms not included in thigal
database. During the optimization phase the palsed

the user-interface to annotate all detections. dawh of
the three optimization rounds, a subset of about 20
detections that were considered ‘'border cases' was
presented in a special session to all camera ofrserv
During this session they could listen to the addidetail.
These detections were re-annotated and used faxa n
optimization round. The optimized settings weretees
against the entire set of initial detections. Tablshows
the distribution of the entire database of recayginThe
first line of results shows the distribution withhet
permissive setting, the second line the distrilbbutigth the
optimized settings.

Table 2: Distribution of original detections ane tinal
score with optimized settings.

only three categories were used: 1) aggressioniriegu
immediate action, 2) aggression not requiring actar 3)

no aggression and therefore a false alarm.

Another difference between the pilot and the depieyt

Aggression | Aggression False Missed
+ action no action alarms alarm
7 34 1359 0
7 22 2 0

was, of course, the larger number of channels hadact
that some of the additional microphones are posttioat
locations in which not all acts of verbal aggressidll be
detected and logged by the police without the sttppb
Slgard. This makes the estimation of the miss legs
reliable, but the police indicated that, althougtiaor act
of verbal aggression may remain unobserved, thgelar
number of foot patrols and the quality of contasith the

The most striking aspect of these results is, ofo® the
huge effect of optimization on the reduction of thember
of false alarms due to the improvement of the aggijom
model. The final false alarm-rate per channel
exceptionally low given the complexity of this
environment. Optimization led also to a reductidrthe
detections of aggressive shouting which did notuireqg

is

public, and the bouncers and staff of pubs makes itimmediate action. In almost all of these casesetiveas

unlikely that serious incidents will not be repaitelhis
entails that the miss-rate is fairly accurate whestomes
to category 1 detections.

only a single aggressive shout, not followed bytHer
aggression.

An interesting aspect is that the 1359 false alammthe
database contained only 47 detections on soundsr oth
than human shouting. These 47 sounds were almost
exclusively sirens, which are designed to attraginén

attention and have an alarm function much like



aggression. The other 1312 false alarms were caSes The results have been judged so impressive thatrdber
people shouting, sometimes very loud and with loks of Dutch police departments, the Dutch railway camp
voice quality due to alcohol consumption, but witho and two prisons already consider the system to be
being aggressive. These recordings give a goocdeissmn indispensable for a modern surveillance system.

of the circumstances under which the detectionesyst

operates.
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