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Abstract 
 
The paper presents a knowledge-based system designed to 
detect evidence of aggression by means of audio analysis. 
The detection is based on the way sounds are analyzed 
and how they attract attention in the human auditory 
system. The performance achieved is comparable to 
human performance in complex social environments. The 
SIgard system has been deployed in a number of different 
real-life situations and was tested extensively in the inner 
city of Groningen. Experienced police observers have 
annotated ~1400 recordings with various degrees of 
shouting, which were used for optimization. All essential 
events and a small number of nonessential aggressive 
events were detected. The system produces only a few false 
alarms (non-shouts) per microphone per year and misses 
no incidents. This makes it the first successful detection 
system for a non-trivial target in an unconstrained 
environment. 

 
1. Introduction 
 
To improve the overall usefulness of camera-based 
surveillance systems it is important that situations with a 
high risk of injury and a relatively fast development, such 
as street-fights, are detected as quickly and as reliably as 
possible. Only then can appropriate proactive action be 
initiated. The ideal is an intelligent camera system that 
does not require a human observer to monitor the scene. 
This system must prioritize potentially dangerous 
situations autonomously and present high priority events 
to a human observer for a final check and possible follow-
up.  
Developments in image processing techniques are unlikely 
to realize this ideal, because visual cues are generally 
either insufficient or ambiguous. Furthermore, to ensure 
that all potentially dangerous situations will be in view of 
a camera, the number of cameras needs to be increased to 
an unrealistic level.  
Of course, humans on the street do not only see but listen 
as well. In fact we use acoustical cues typically as an 
indication to raise alertness and to focus visual attention in 
the correct direction; audition guides vision. 

This paper describes the development of the SIgard system 
that detects the presence of aggressive shouting in 
realistic, uncontrollable environments. This system must 
function autonomously in complex social environments 
such as a city center on a busy Saturday night, and present 
high priority events to a human observer for possible 
follow-up. Sound Intelligence has installed the verbal 
aggression detection system successfully in several Dutch 
city-centers, but also in prisons, in public transport (trains 
and train stations), and at various other sites.  
This paper starts with a short overview of the problems 
associated with the development of the verbal aggression 
detection system and why a knowledge-based approach 
has been chosen over the standard statistical methods. The 
scientific basis of the model for verbal aggression is 
addressed in combination with the formulation of a 
number of cues. This leads to the design of an auditory 
scene analysis system with an attentional mechanism and 
tools to search for aggression cues in the attented signal. 
This system has been tested in a pilot-project and during 
the first 10 weeks of the official deployment in Groningen. 
The paper ends with a number of conclusions about the 
system itself and the reasons for its success in situations 
that are well outside the domain of traditional 
classification methods.   

 
2. Unconstrained environments 
 
There are two main problems associated with acoustic 
aggression detection. The first is the rarity of target events 
and the second the fact that the targets typically occur in 
environments in which a majority of much more frequent 
sounds, like laughter and or playful shouts, occur that are 
similar to verbal aggression. It is essential that these 
sounds do not lead to a false-alarm rate that is 
unacceptable for the user.  
There are numerous well-known standard classification 
methods for acoustic signals, such as Neural Network, 
Bayesian Nets, and Hidden Markov Models. These 
statistical methods rely on the availability of training 
databases that are representative for the test and eventual 
deployment condition: the more data and the narrower the 
domain the better the classification results will be.  
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These methods are unsuitable for verbal aggression 
detection in unconstrained environments [1]. A first reason 
is that it is very difficult to acquire realistic training 
examples of the target event (acquiring a few realistic 
samples may require many months of recording and 
manual annotation). A second reason is that since the 
operating environment is not known beforehand, it is 
impossible to record suitable training material that covers 
all (still unknown) eventualities that may occur in an 
unconstrained environment. Consequently, the statistical 
standard methods are unsuitable for this particular 
problem. 

 
3. A model of verbal aggression 
 
The starting point for the development of the model for 
verbal aggression is the assumption that shouts and verbal 
aggression are behaviorally significant, and that it is 
therefore likely that relatively low level neural processes 
are able to focus attention to the target. This implies that 
simple Auditory Scene Analysis (ASA) can be used to 
extract an interesting subset of the signal, which can be 
analyzed further with class-specific knowledge. 
This approach has been investigated in the master thesis of 
Mark Huisman [2] which addresses the estimation of 
emotional content in speech. Huisman uses Scherer’s 
Component Process theory [3][4] as a theoretical basis.  
Scherer describes the reaction of the autonomous nervous 
system to an emotional stimulus in terms of an activation 
or deactivation of ergotropic and trophotropic arousal. The 
first is associated with a stimulation of the sympathic 
nervous system and leads for example to an increase in 
heart-rate, blood pressure, transpiration, and adrenalin 
secretion.  An increase in ergotropic arousal results in an 
orientation reaction due to the stimulus’ apparent 
relevance for the internal goals. This increases awareness 
of the physical environment and prepares the individual 
for immediate action. Emotions with a strong ergotropic 
arousal are panic and anger.  
Trophotropic arousal leads to the opposite reaction 
through a stimulation of the parasympathic nervous 
system: the organism loses interest in the environment and 
becomes self-absorbed. Sadness is an example of an 
emotion associated with trophotropic arousal.  
The combination of ergotropic arousal with the muscles 
and anatomy of the vocal tract results in a number of cues 
that are in line with the Lombard reflex [5] which occurs 
while speaking in noisy environments. These comprise 
increases of the fundamental frequency, the amplitude, 
and the relative duration of the voiced (periodic) part of 
speech, in combination with decreases of the importance 
of the unvoiced fraction and the spectral tilt (which results 
in spectral “whitening”). Apart from these documented 
similarities to the Lombard reflex, ergotropic arousal leads 

to a reduction of voice quality caused by a loss of control 
over the vocal folds due to over-excitation. Except for the 
absolute energy, which is strongly dependent on distance, 
all these cues can be used for verbal aggression detection.  
Huisman [2] investigated a large number of numerical 
cues that can be estimated from the signal with the signal 
processing approach described in the next section. These 
cues where correlated with the different emotions of a 
database of simulated emotions [6]. The three best cues for 
verbal aggression and panic were fundamental frequency 
(f0), the ratio of signal energy below and above 1000 Hz 
(RE), and the standard deviation of the energy of the three 
highest peaks in the spectrum (std E3). The separation 
between strong ergotropic emotions and all other emotions 
in the database in a space spanned by theses three main 
cues is visualized in Figure 1. The fundamental frequency 
is the most informative cue.  

 
Figure 1 Aggressive emotions are represented by the upper surface 

 
4. System description 
 
The detection system consists of 1) a signal processing 
stage that simulates some form of auditory attention in the 
form of foreground/background separation, 2) methods to 
extract cues for verbal aggression, and 3) a decision 
mechanism. Together with a description of the physical 
implementation these are outlined in this section.  
Human hearing consists of several stages, the first of 
which is the conversion of sound waves reaching the ear 
into a neural signal which can be processed by the brain. 
In the human inner ear, which is shaped like a snail's shell 
hence the name cochlea, a structure called the basilar 
membrane is set in motion by the sound waves reaching it 
through the outer and middle ear. This basilar membrane 
has varying mechanical oscillatory properties leading to a 
nearly exponentially decreasing resonance frequency over 
the length of the cochlea.  
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(See [7] for a more detailed description of the cochlea.) 
Hair cells placed on the basilar membrane convert the 
motion at each location into nerve activation. This 
produces a cochleogram [8], a 2D picture of the energy of 
the sound as a function of time and frequency (as can be 
seen in Figure 2). This energy was computed using a leaky 
integration with a time constant of 10 ms. 
A sophisticated model of the human cochlea, a 
transmission-line implementation developed at the 
Biophysics department in Groningen [9], was used. This 
ensures minimal information loss in this early stage, which 
cannot be repaired in later stages. 
 

 
Figure 2: Cochleogram. The last uttering (at t=2.1 s) sounds aggressive. 

 

A process located in the first neural relay station - the 
cochlear nucleus - analyses the temporal dynamics in each 
frequency channel and performs a first foreground 
background separation [10]. This attenuates the slowly 
changing background sounds that do not attract human 
attention.  
This function was implemented in the form of a 
dynamically adapting background model with a time 
constant of 10 seconds. If the background model 
encounters energy more than 6 dB above the current value 
at any location, this energy is assumed to be caused by a 
foreground sound, and the corresponding energy is not 
included in the background model.  
So 
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Very short pulse-like sounds that may occur in 
microphone signals, are removed with a similar technique 
as used to compute the background, but now using a time 
constant of 10 ms. The energy 'filtered' with this time 
constant, and not 'claimed' by the background model, is 
the foreground signal (see Figure 3).  
This foreground signal is used as a basis for the search for 
verbal aggression cues. The properties used are: the 
presence, salience and height of the pitch, the level 
(compensated for the expected distance between speaker 
and microphone), the audiblity and three measures for the 
spectral shape and distortion of the harmonic pattern.  

 

 
Figure 3 Foreground energy 

 

An efficient implementation of a pitch finding algorithm 
was used. Herein the average amount of energy of the first 
n harmonics of a pitch candidate, the sum of the energy at 
harmonic positions, is compared to the energy at half-
harmonic hh=(n+1/2)*f0 positions. So 
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This gives the signal to noise ratio, or salience of the pitch. 
The frequency value with the highest salience is chosen as 
the pitch. When the signal is classified as speech-like, it 
has the right temporal dynamics and a pitch in the human 
range, voice properties such as the distortion of the voice 
are determined, which can be associated with stress on the 
vocal chords. This distortion shows itself as an increase in 
the high frequency energy, the width and fluctuation of 
harmonics and in the separation between harmonics. Each 
sound or voice cue is compared with knowledge about the 
properties of sounds that attract human attention in general 
or with values representative of this cue in aggressive 
sounds. This results in a measure of verbal aggression 
through the combination of separate cues into an overall 
pseudo-probability. This is illustrated for the sound used 
for Figure 2 and Figure 3 in Figure 5.  
Figure 4 shows an overview of the whole system. 

 
Figure 4 System overview 
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Figure 5 Computation of overall likelihood based on individual cues 

 
If the probability of aggressive shouting is high enough 
over a sufficiently long interval, an aggression alarm is 
generated. The thresholds and especially the amount and 
duration of aggression that needs to be present are 
parameters that depend on user feedback. 
The physical setup consists of a low cost, far field, 
weather-proofed, microphone with a ~50 dB dynamic 
range (ClockAudio C007wr). This microphone is 
connected to specially designed and weatherproof analysis 
hardware. Detections are routed via IP to a central 
gateway where they are logged and administrated. A user 
interface can be configured to give an audio or video 
alarm on detection and provides an observer with the 
possibility to add comments and access the logs.  Figure 6 
shows the user interface. 
The varying acoustics of application for example in a 
narrow street or on a large open square, are measured 
during the installation phase. In the optimized system, the 

cochleogram is adapted for the average spectral influence 
of these acoustics. 
 

 
Figure 6 User-interface with alarm popup 

  
5. Experimental setup 
 
Measuring the quality of the aggression detection system 
objectively is not straightforward. During the development 
of the system there was no scientifically validated 
database with real-life aggression recordings available on 
which the system could be validated.  
The Cassandra project, a cooperation with the University 
of Amsterdam, involves the construction of a video and 
audio database of a range of realistic aggression scenes 
played by actors in a train station. But although this 
database contains realistic scenes, the drawback of the use 
of actors is that they have trained voices, which they 
always protect during acting. This is a problem, since one 
of the most important cues in the system relates to the loss 
of control over the voice. Another problem is that there is 
no clear, scientifically valid, and objective measure for the 
level of aggression present in a voice that can be used to 
form a ground-truth.  
These problems prevent a normal scientific validation. But 
a proper scientific validation is not the best indicator for 
the successful commercial deployment of new technology: 
ultimately customer satisfaction in normal operating 
conditions is much more important. It was therefore 
decided to let the Groningen police judge the quality of the 
system according to their needs and expectations, which 
are in part specific for the local situation. This led to two 
assessment periods. The first was a three week pilot 
project at two locations, which took place in the spring of 
2005 and the second, which was recently concluded, was 
the 10 week optimization phase of the official deployment 
with 11 different microphone positions spread over the 
inner-city of Groningen. 
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In both cases the detectors were placed in the center of the 
pub district. This center services about 40000 visitors each 
week and has no serious problem with excessive 
aggression. However, (verbal) aggressive incidents occur 
with a frequency of about once every week near each of 
the 7 camera’s in this area. During the busiest three 
evenings and nights of the week, surveillance is intensive 
(both with cameras and foot patrols). The positioning of 
the cameras ensures that the probability is low that 
aggressive incidents will be missed by the human 
observers. This entails that it is possible to estimate the 
miss- and false-alarm rate reliably.  
The police logged all detected aggressive events during 
both test periods. At the same time the system produced 
detections which were stored with a temporal context of 1 
minute before and after the detection. All detections were 
presented to the camera-observers and assigned to 
different classes, based on their usefulness as supporting 
evidence for the camera surveillance task.  
Several differences exist between the original pilot and the 
official deployment. In the pilot we used the built-in 
microphones of the Mobotix M10D camera. However 
these turned out to have a dynamic range for far-field 
sounds that was too limited. This resulted in clipping of 
very loud signals, such as ambulance sirens. 
Unfortunately, clipping has spectral effects that are quite 
similar to the loss of voice quality, and therefore the 
results showed an increased number of false alarms due to 
sirens. 
During the pilot phase the police used four classes for the 
annotation of the data: essential (indicating aggression and 
the need to act immediately), useful (indicating aggression 
but no need to act), justified (no aggression, but the 
attention of a policeman on the scene would have been 
grabbed) and false alarms. During the deployment phase 
only three categories were used: 1) aggression requiring 
immediate action, 2) aggression not requiring action, or 3) 
no aggression and therefore a false alarm.   
Another difference between the pilot and the deployment 
was, of course, the larger number of channels and the fact 
that some of the additional microphones are positioned at 
locations in which not all acts of verbal aggression will be 
detected and logged by the police without the support of 
SIgard. This makes the estimation of the miss rate less 
reliable, but the police indicated that, although a minor act 
of verbal aggression may remain unobserved, the large 
number of foot patrols and the quality of contacts with the 
public, and the bouncers and staff of pubs makes it 
unlikely that serious incidents will not be reported. This 
entails that the miss-rate is fairly accurate when it comes 
to category 1 detections.  

 
 
 

6. Results 
 
During the pilot phase of 18 days a total of 96 detections 
were produced. The distribution is shown in table 1. 
 

Table 1 Distribution of detections during pilot project. 
 

essential useful Justified 
alarm 

false 
alarm 

missed 

2 23 44 27 0 
 
During the 10 week optimization phase of the final 
deployment, the system used weak settings to ensure a 
large number of recorded false alarms. These recordings 
were later used to test more restrictive settings. Note that 
the optimization involves the reduction of the set of 
accepted events: it is impossible that the optimized 
settings produce false-alarms not included in the initial 
database. During the optimization phase the police used 
the user-interface to annotate all detections. For each of 
the three optimization rounds, a subset of about 20 
detections that were considered 'border cases' was 
presented in a special session to all camera observers. 
During this session they could listen to the audio in detail. 
These detections were re-annotated and used for a next 
optimization round. The optimized settings were tested 
against the entire set of initial detections. Table 2 shows 
the distribution of the entire database of recordings. The 
first line of results shows the distribution with the 
permissive setting, the second line the distribution with the 
optimized settings.  

 
Table 2: Distribution of original detections and the final 

score with optimized settings. 
Aggression 

+ action 
Aggression 
no action 

False 
alarms 

Missed 
alarm 

7 34 1359 0 
7 22 2 0 

 
The most striking aspect of these results is, of course, the 
huge effect of optimization on the reduction of the number 
of false alarms due to the improvement of the aggression 
model. The final false alarm-rate per channel is 
exceptionally low given the complexity of this 
environment. Optimization led also to a reduction of the 
detections of aggressive shouting which did not require 
immediate action. In almost all of these cases there was 
only a single aggressive shout, not followed by further 
aggression.  
An interesting aspect is that the 1359 false alarms in the 
database contained only 47 detections on sounds other 
than human shouting. These 47 sounds were almost 
exclusively sirens, which are designed to attract human 
attention and have an alarm function much like 
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aggression. The other 1312 false alarms were cases of 
people shouting, sometimes very loud and with loss of 
voice quality due to alcohol consumption, but without 
being aggressive. These recordings give a good impression 
of the circumstances under which the detection system 
operates. 

 
7. Conclusions 
 
The verbal aggression detection system presented in this 
paper is by necessity an example of a knowledge-driven 
approach. The model of aggression is based on 
Component Process theory, a well-established theory of 
the effects of emotions on speech that leads to predictions 
that allow the formulation of effective acoustic cues 
related to psychophysical units like pitch, roughness and 
timbre. The use of these effective and informative cues 
allows a decision system with very few parameters in 
combination with a simple recognition stage. The signal 
processing is based on models of the auditory periphery in 
which preservation of information and auditory object 
tracking are central concepts. Most computational effort is 
placed on the signal-processing which must ensure that the 
acoustic cues are as informative as (physically) possible.  
Due to the knowledge-based foundation, the classification 
system is easily extended and requires little retraining 
when new target sounds are included.  
The effect of optimization on the performance is 
prominent. However, optimization becomes less important 
as more realistic samples of verbal aggression are recorded 
at different deployment locations and situations. These are 
used to determine initial model paramters with a much 
reduced false alarm rate and speed up the optimization 
process.  
The system described in this paper may be the first 
detection system for a non-trivial target in an 
unconstrained environment. The system needs to be fine-
tuned for a new environment and for new user demands, 
but when properly fine-tuned, the system can reach a near 
human performance (on the recordings). This raises the 
important scientific question why the system is working so 
well in complex, uncontrolled social settings that are 
normally well beyond the scope of standard (sound) 
classification methods. We believe this is in part due to the 
fact that traditional classification methods focus on closed 
domains, while the human perceptive system is optimized 
for an open domain. Little in the presented approach limits 
the verbal aggression detection system to a specific 
domain. In particular the match of explicit properties of a 
target phenomenon with explicit and meaningful cues 
estimated from the signal ensures that the system is target 
specific, but insensitive to the details of general acoustic 
environments that are unlikely to produce a pattern of cues 
as seen in verbal aggression.  

The results have been judged so impressive that a number 
of Dutch police departments, the Dutch railway company, 
and two prisons already consider the system to be 
indispensable for a modern surveillance system. 
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